
BioHackJP 2023 Report R4: RDF Data integration using
Shape Expressions
Jose Emilio Labra Gayo1, Andra Waagmeester2, Yasunori Yamamoto3,
Ángel Iglesias Préstamo1, Toshiaki Katayama3, Thomas Liener4,
Deepak R. Unni6, Jerven Bolleman6, Kiyoko F. Aoki-Kinoshita7,
Masashi Yokochi8, Núria Queralt Rosinach9, Hiroshi Mori10, Daniel
Fernández Álvarez1, Alberto Labarga11, Robert Hoehndorf13, Eric
Prud’hommeaux14, Claude Nanjo15, Nishad Thalhath12, and Yoko
Okabeppu16

1 WESO Lab, University of Oviedo, Spain 2 Micelio, Belgium 3 Database Center for Life Science,
Japan 4 Unaffiliated 6 SIB Swiss Institute of Bioinformatics, Switzerland 7 Soka University, Hachioji,
Tokyo, Japan 8 Osaka University, Suita, Osaka, Japan 9 Leiden University Medical Center,
Netherlands 10 National Institute of Genetics, Mishima, Japan 11 Barcelona Supercomputing Center
12 RIKEN Center for Integrative Medical Sciences, Yokohama, JP 13 Janeiro Digital, USA 14
MedOntology, LLC, USA 15 OKBP inc. Japan

BioHackathon series:
DBCLS BioHackathon 2023
Kagawa, Japan, 2023
R4

Submitted: 02 Jul 2023

License:
Authors retain copyright and
release the work under a Creative
Commons Attribution 4.0
International License (CC-BY).

Published by BioHackrXiv.org

Background
In this report, we describe the activities that we have been carrying on during the Biohackathon
2023, held in Shodoshima, Japan. The main goal of the project has been to identify approaches
and issues that can be used to integrate large RDF datasets by creating subsets described by
Shape Expressions (Prud’hommeaux et al., 2014).
We have recently submitted a publication on creating subsets from Wikidata (Hosseini, 2023).
Wikidata is a knowledge graph which is constantly in flux and getting to a size which makes it
hard to locally replicate. By creating topical subsets we are able to dissect a managable subset
that can be loaded in local RDF stores for further processing.
However, this subsetting app approach relies on Wikidata daily dumps, which are available in
JSON format. For this hackathon we specifically choose to extend the subsetting mechanisms
to work on RDF dumps or SPARQL endpoints.
RDF data provides a solution for data interoperability which in principle can enable different
data sources to be smoothly integrated. Nevertheless, in practice, the growing adoption of
RDF has also made that the consumption of RDF data is challenging given the size of RDF
data collections makes them not feasible to be easily collected or manipulated. As an example,
UniProt RDF data size is around 110 billions of triples or over 700 gigabytes of gzipped
RDF/XML, and PubChem RDF is in the same order of magnitude in volume, both these
resources describe 100’s of different kinds of data. This situation requires some agents to
provide intermediate resources to manipulate the RDF data which is consumed, and described.
As an example, DBCLS has created the rdfconfig tool which provides descriptions of the RDF
data collections they contain.
In order to facilitate the integration of those RDF data, this project has been exploring ways
to create subsets of RDF data which could contain only the information of interest for some
specific tasks. Making those subsets available for researchers in an easy way, could facilitate
the research activities and give the RDF data more value.
Creating subsets of RDF data can also help when the information available in those large RDF
data sources is continually evolving. So if a researcher wants to make reproducible research

Jose E. Labra et al., BioHackJP 2023 Data Integration ShEx (2023). BioHackrXiv.org 1

https://2023.biohackathon.org/
https://github.com/biohackathon-japan/bh23-dataintegrationshex
https://creativecommons.org/licenses/by/4.0/
http://biohackrxiv.org/
http://shex.io/
https://www.semantic-web-journal.net/content/wikidata-subsetting-approaches-tools-and-evaluation-0
https://biohackrxiv.org/

based on those SPARQL endpoints, it may be possible that the results of the queries can differ
along the time.
The possibility of having a tool that creates subsets can be considered as a way to create
snapshots of the RDF data which could later be packaged and distributed along the research
results, helping the creation of reproducible research based on RDF data.
Another reason for the creation of RDF subsets is to make a subset from multiple data sources
where it is unfeasible to get a designated dataset using federated queries due to these data
sizes and technical immaturity of SPARQL federated query handling.
The Shape Expressions language was designed as a concise and human-readable language to
describe and validate RDF data. Although it was not initially designed to create subsets, the
possibility of having a concise way to describe RDF makes it an ideal candidate for this task.
Indeed, ShEx has already been used to create subsets of Wikidata. The following paper contains
a list of different subseting approaches which have been used in Wikidata: https://www.
semantic-web-journal.net/content/wikidata-subsetting-approaches-tools-and-evaluation-0.
The main goals of this project have been to review the different approaches to create subsets
of large RDF data in order to facilitate the integration of different RDF collections.
We identified the participation of 3 main agents:

• Data producers or providers who are interested in produce RDF data that can have more
value and be used by third parties.

• Data consumers who are interested in an easy way to get access to the RDF data available
in those sources and to create reproducible workflows which can contain manageable
RDF subsets.

• Data integrators who can help in the intermediate process of bringing over the RDF data
produced by the providers to the end consumers. One important aspect to take into
account is that the RDF data may need to be transformed with actions like changing
URI prefix declarations or manipulating the topology of the RDF data. Another aspect
is the need to understand the structure of the RDF data collected and to agree in a
common structure. For this, Shape expressions also offer the possibility to validate the
RDF data that is produced and the RDF data that may be consumed. Avoiding the
need of defensive programming techniques.

Outcomes

Creation of ShEx based subsets
One important aspect of data integration is the possibility of creating small subsets from large
RDF data. During the biohackathon we explored several use cases taking data from UniProt,
PubChem, TogoGenome, etc.
We created a github repository called subsetting-examples that contains some example SPARQL
queries, ShEx schemas and scripts used during the biohackathon. From those, two of the
example queries were rewritten in such a way that is accepted by the pschema-rs validator.
More into this will be discussed later on.
The use cases that we explored are the following:

UniProt subset based on proteins

A subset of proteins in UniProt are glycosylated; these are known as glycoproteins. We
wanted to extract all glycoproteins from UniProt by taking those entries that had Glycosylation
Annotations.

Jose E. Labra et al., BioHackJP 2023 Data Integration ShEx (2023). BioHackrXiv.org 2

https://www.semantic-web-journal.net/content/wikidata-subsetting-approaches-tools-and-evaluation-0
https://www.semantic-web-journal.net/content/wikidata-subsetting-approaches-tools-and-evaluation-0
https://github.com/shex-consolidator/subsetting-examples
https://github.com/angelip2303/pschema-rs
https://biohackrxiv.org/

We did a first experiment taking as input RDF dumps from UniProt. Kiyoko provided a simple
SPARQL query that obtains proteins and annotations. Jose Labra converted the SPARQL query
to ShEx. That ShEx schema was used as input in the PSChema tool that has been developed
by Ángel Iglesias in Rust and we already created a subset that was later publishedinZenodo
with its proper doi.

UniProt subset based on Subcellular locations

Yasunori provided an example SPARQL query about Subcellular locations that was later
converted by Jose Labra to ShEx in order to create subsets from UniProt. This query is to
obtain UniProt annotations based on an amino-acid position of a specific protein, especially
to know whether an amino-acid residue is located in a cytoplasmic or a transmembrane
domain. The subsets were generated by Ángel Iglesias using the PSChema Rust tool which
was interesting as we discovered a bug that required an update of the tool. In the following
section we will comment on the improvements that led to the results obtained.

The results obtained from the experiment

It is worth mentioning that we have used the uniprotkb_reviewed_viruses_10239_0.rdf
dump (with a size of 1.13GB) from the Uniprot Knowledge graph to create the subsets from.
As it is serialized in a RDF/XML format, a tiny pipeline for converting it into N-Triples, the
serialization format accepted by the tool, is required. The script that automatically processes
the compressed dump can be seen in the examples section of the tool’s repository.
With that being said, pschema-rs has been tested against the already described Shapes
tracking the time it takes for the tool to process the dataset and the memory consumed. The
program is run three times for each Shape Expression, after which the average results are
calculated. Note that a machine with an Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz (12
cores and 24 threads), and 40GB of RAM memory installed is used to run the experiment.
The results are presented in the table below:

Shape
Expression

Number of triples
Initially

Number of resulting
triples

Time
(s)

Memory
consumption (GB)

protein 7,346,129 226,241 14.58 3.87
subcellula
r_location

7,346,129 1,084,151 37.76 3.75

In relation to the results obtained, it is important to note that despite being in the early stages
of development, the tool demonstrates the capability to process large datasets in a reasonable
amount of time, while maintaining an acceptable level of memory consumption. To achieve
this, numerous optimizations were implemented, including the use of a system that converts
textual representations of subject-predicate-object triple into numeric ones. This approach
enables the tool to utilize less memory and improve its speed through the cache. Additionally,
it is observed that the memory usage of the tool does not appear to be directly related to the
complexity of the expression, but with the number of triples matched. However, further testing
is being conducted to make this assertion more robust.

Analysed some use cases to extract subsets from PubChem, GlyCosmos and Reactome

Kiyoko suggested that we could use example 10 from PubChem documentation which works
on PubChem RDF data. This query could be used to link the proteins in PubChem with those
in UniProt. We analysed the RDF data dumps
Another use case suggested from GlyCosmos was this SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

Jose E. Labra et al., BioHackJP 2023 Data Integration ShEx (2023). BioHackrXiv.org 3

https://github.com/shex-consolidator/subsetting-examples/blob/master/protein/protein.sparql
https://github.com/shex-consolidator/subsetting-examples/blob/master/protein/protein.sparql
https://github.com/shex-consolidator/subsetting-examples/blob/master/protein/protein.shex
https://github.com/angelip2303/pschema-rs
https://doi.org/10.5281/zenodo.8086938
https://github.com/shex-consolidator/subsetting-examples/blob/master/subcellular-locations/subcellular-locations.sparql
https://github.com/shex-consolidator/subsetting-examples/blob/master/subcellular-locations/subcellular-locations.shex
https://github.com/angelip2303/pschema-rs/blob/main/examples/from_uniprot/uniprotkb_reviewed_viruses_10239_0.rdf.xz
https://github.com/angelip2303/pschema-rs/blob/main/examples/bh23/run.sh
https://pubchem.ncbi.nlm.nih.gov/docs/rdf-use-cases#section=Case-10-Summarize-the-statistics-about-the-total-number-of-substances-tested-in-the-PubChem-database-against-each-protein-target-
https://ftp.ncbi.nlm.nih.gov/pubchem/RDF/
https://biohackrxiv.org/

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX glycan: <http://purl.jp/bio/12/glyco/glycan#>
PREFIX gco: <http://purl.jp/bio/12/glyco/conjugate#>
PREFIX faldo: <http://biohackathon.org/resource/faldo#>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX mass: <https://glycoinfo.gitlab.io/wurcsframework/org/glycoinfo/wurcsframework/1.0.1/wurcsframework-1.0.1.jar#>

SELECT
(SUBSTR(STR(?protein), 33) AS ?ac)
?beginP

?saccharide
WHERE {

?protein <http://purl.jp/bio/12/glyco/conjugate#glycosylated_at> ?glyco_site .
?glyco_site faldo:location ?site .
?site faldo:position ?beginP .
?glyco_site <http://purl.jp/bio/12/glyco/conjugate#has_saccharide> ?saccharide .

}

That SPARQL query should work in GlyCosmos SPARQL endpoint which follows this schema.
The RDF dump can be obtained by downloading the results of this SPARQL query as RDF:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX glycan: <http://purl.jp/bio/12/glyco/glycan#>
PREFIX gco: <http://purl.jp/bio/12/glyco/conjugate#>
PREFIX faldo: <http://biohackathon.org/resource/faldo#>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX mass: <https://glycoinfo.gitlab.io/wurcsframework/org/glycoinfo/wurcsframework/1.0.1/wurcsframework-1.0.1.jar#>
CONSTRUCT {

?protein <http://purl.jp/bio/12/glyco/conjugate#glycosylated_at> ?glyco_site .
?glyco_site faldo:location ?site .
?site faldo:position ?beginP .
?glyco_site <http://purl.jp/bio/12/glyco/conjugate#has_saccharide> ?saccharide .

}
WHERE {

?protein <http://purl.jp/bio/12/glyco/conjugate#glycosylated_at> ?glyco_site .
?glyco_site faldo:location ?site .
?site faldo:position ?beginP .
?glyco_site <http://purl.jp/bio/12/glyco/conjugate#has_saccharide> ?saccharide .

}

Reactome

Kiyoko also suggested a query from Reactome for extracting pathways involving glycoproteins.
Reactome data are currently not accessible from any endpoint, so the data would first need
to be downloaded using BioPAX level 3 format and loaded into a triplestore. Based on this,
Kiyoko suggested using this SPARQL query:
PREFIX biopax3: <http://www.biopax.org/release/biopax-level3.owl#>
SELECT DISTINCT ?pathway_ID ?pathwayName ?organism
FROM<http://rdf.glycosmos.org/pathway_reactome_v83>
WHERE {

?pathway a biopax3:Pathway .
?pathway biopax3:displayName ?pathwayName .
?pathway biopax3:organism/biopax3:name ?organism .

?pathway biopax3:xref ?unixref .

Jose E. Labra et al., BioHackJP 2023 Data Integration ShEx (2023). BioHackrXiv.org 4

https://ts.alpha.glycosmos.org/sparql
https://glycosmos.org/programmatic
https://biohackrxiv.org/

?unixref biopax3:db ?db_g .
FILTER(STR(?db_g)="GlyCosmos")
?pathway biopax3:xref ?unixref_r .
?unixref_r biopax3:db ?db_r ;

biopax3:id ?pathway_ID .
FILTER(STR(?db_r)="Reactome")

}

which should be run in the following SPARQL endpoint: https://ts.glycosmos.org/sparql and
the expected results should be the following.

TogoGenome

Hiroshi Mori and Yoko Okabepu created this example SPARQL query which is working
against the TogoGenome SPARQL endpoint. TogoGenome is an RDF-based genome database
developed by DBCLS. This SPARQL query retrieves the UniProt protein ID list for a single
microbial strain (Hydrogenobacter thermophilus TK-6). Jose Labra converted the SPARQL
query to ShEx.

Subsetting book
Andra Waagmeester created an executable book which will contain examples and descriptions
about how to create RDF subsets.
The book was automatically published using Github actions created by Núria Queralt Rosinach.

Work on sheXer
sheXer is a tool that extracts ShEx descriptions from RDF content (in local dumps or remote
files/endpoints) by mining instance-level data. sheXer is able to produce ShEx schemas and
constraint-level stats w.r.t. compliance with the original RDF input. The stats are expressed
as inline comments next to the shapes extracted. A problem of this tool is that it can raise
out-of-memory errors or spend too much computation time when handling too large RDF
dumps. A possibility to overcome this issue is to split the RDF dumps in portions, run sheXer
for those portions and consolidate their results. During the biohackathon, Daniel Fernández
created a tool that consolidates ShEx results.
The proposed sollution is able to handle shexer’s output, so it is adequate for this use case.
However, It assumes some structural features in the ShEx inputs, so it may raise issues when
trying to use it with input ShEx files not generated by sheXer.
This tool is able to detect shape labels mentioned in more than one result file and merge their
internal constraints in a new single shape. The integration of constraints ensure conformance
between every instanceused to extract a shape in the input files and its correspondent shape.
This is achieved by including a proper cardinality when a certain constraint is not observed
among all the shapes to merge.
The tool is also capable of keeping sheXer’s stats regarding number of instances and frequency
of each observed constraint. However, the stats attached to merged shapes may be affected
by cases in which a certain instance was used to extract a shape in N (more than one) partial
dumps. In such cases, the instance will have N times more weight than it should in the merged
stats.

Use case about Multi-omics data integration
We were discussing a possible use case about data integration on multi-omics.
Med2RDF

Jose E. Labra et al., BioHackJP 2023 Data Integration ShEx (2023). BioHackrXiv.org 5

https://ts.glycosmos.org/sparql
https://reactome.org/download/current/biopax.zip
https://is.gd/MGeyxI
http://togogenome.org/sparql
https://github.com/shex-consolidator/subsetting-examples/blob/master/togogenome/togogenome.shex
https://rdfsubsetting.github.io/
http://med2rdf.org/
https://biohackrxiv.org/

• UniProt
• A possible example from natural language: “Patient with headache and some symptoms”
• Tasks to do: Obtain relationships, extract triplets, obtain treatments/possible diagnos-

tics/test
• HPO
• https://athena.ohdsi.org/ (OMOP vocabularies)
• Generate RDF from relationships

Possible tools to use: ShExML.

Analysis about RDF data description mechanisms
As with any data source, it is necessary to describe its structure. And if we want to obtain
subsets of RDF data then the RDF data has to be described in sufficient detail that can
facilitate the subsetting process. One way is to write ShEx to describe what the subset ought
to be. Another approach would be to see if other modes of representation can be used to
describe the structure of RDF data and then generate shapes from this description.
As part of this effort, we explored the following:

• LinkML: Linked Data Modeling Language (LinkML), a flexible modeling language that
allows you to define schemas in YAML that describe the structure of your data. LinkML
also provides a framework for translating this YAML representation into other forms like
ShEx.

• RDF-config: RDF-config is a tool that generates SPARQL queries, schema diagrams,
and most importantly ShEx from a simple YAML-based configuration that conforms to
a specification.

Both LinkML and RDF-config describe the structure of RDF data in YAML and have sufficient
tooling to automatically generate ShEx shapes. As a result, we decided to compare the ShEx
output of both tools by using PubChem as the data source of interest.
PubChem provides an RDF endpoint and has captured the structure of their RDF data as a
LinkML YAML. This is the file that serves as an input to LinkML to generate ShEx shapes.
Deepak provided the ShEx shapes derived from the YAML.
Alternatively, Toshiaki had captured the structure of RDF data in PubChem in the YAML-based
configuration of RDF-config. After which, this YAML file was used to generate ShEx shapes
using RDF-config tools. Toshiaki provided the ShEx shapes derived from the YAML.
It is clear that the philosophy adopted by LinkML and RDF-config is similar:

• define the structure of RDF data in YAML
• automatically generate ShEx shapes based on the YAML

Next, we analyzed the shapes and a thorough side by side comparison revealed that the shapes
generated by RDF-config are cleaner and simpler. This can be attributed to the fact that the
RDF-config YAML was prepared after investigating the PubChem RDF endpoint and carefully
cataloguing the classes, properties, and predicates. On the other hand, the shapes generated
by LinkML contained more properties and uses specific types that are native to LinkML but
provides more expressivity.
Following is an example of the Taxonomy shape generated by LinkML:
<Taxonomy> CLOSED {

($<Taxonomy_tes> (rdf:type @linkml:Uri * ;
skos:prefLabel @linkml:String ? ;
skos:altLabel @linkml:String ? ;
owl:sameAs @linkml:Uri ? ;
skos:closeMatch @linkml:Uri *

Jose E. Labra et al., BioHackJP 2023 Data Integration ShEx (2023). BioHackrXiv.org 6

https://athena.ohdsi.org/
http://shexml.herminiogarcia.com/
https://linkml.io/
https://github.com/dbcls/rdf-config
https://github.com/shex-consolidator/subsetting-examples/blob/master/linkml_rdfconfig/pubchemrdf_by_linkml.shex
https://github.com/shex-consolidator/subsetting-examples/blob/master/linkml_rdfconfig/pubchem_by_rdfconfig.shex
https://biohackrxiv.org/

) ;
rdf:type [<Taxonomy>] ?

)
}

In the case of rdfconfig. We found that the initialTaxonomy shape was the following:
<PubChemTaxonomyShape> {

rdf:type [biopax:taxonomy] ;
dcterms:title xsd:string ;
skos:closeMatch IRI *

}

Which was later improved during the biohackathon. The new updated version obtained from
RDF-config was:
<PubChemTaxonomyShape> {

rdf:type [sio:SIO_010000] ;
skos:prefLabel xsd:string ;
skos:altLabel xsd:string * ;
skos:closeMatch IRI * ;
cito:isDiscussedBy IRI * ;
owl:sameAs IRI

}

One aspect of the shapes generated by LinkML is that the constraint applied on rdf:type
property needs to be improved. In the example above, it is clear that the constraint on
rdf:type is self-referential, i.e. the constraint states that all instances of Taxonomy must have
rdf:type as Taxonomy. This is the default expression of ShEx from LinkML and definitely
needs improvement. Another way to express the rdf:type constraint would be to explicitly
state the values for rdf:type as enumeration in the LinkML YAML such that this is parsed
appropriately. When we tried expressing the enumeration and then translating the YAML to
ShEx, we realized that the enumerations were not being parsed properly. There is a ticket in
the LinkML repository on GitHub and a corresponding pull request that fixes this issue.

Future work

Add FROM <. . .> to ShEx
• Problem to solve: how to validate/extract RDF data when it is behind different RDF

graphs?
• Currently ShEx processors assume a single RDF graph but it may be interesting to add

some kind of annotation to ShEx which allows ShEx processors to take into accout the
FROM declarations when they are working against SPARQl endpoints.

Machine-readable way that RDF data providers describe their RDF
dumps
One problem for creating RDF data subsets from RDF data dumps is that not all RDF providers
follow the same structure to publish the RDF dumps and that the descriptions of the contents
of those RDF dumps are not published.
In order to solve that problem it would be interesting to follow some guidelines or common
patterns such as providing files in the ./well-known/ namespace. These files should contain
or direct to machine-readable descriptions in either ShEx or SHACL.
During the biohackathon we were reviewing the way that different data providers follow to
describe their RDF dumps. Some of the providers we took into account were: - Uniprot -

Jose E. Labra et al., BioHackJP 2023 Data Integration ShEx (2023). BioHackrXiv.org 7

https://github.com/linkml/linkml/issues/1513
https://github.com/linkml/linkml/pull/1516
https://ftp.uniprot.org/pub/databases/uniprot/current_release/rdf/
https://biohackrxiv.org/

PubChem - TogoGenome
In order to add .well-known/void declarations, Jerven Bolleman already had the void-
generator. VoID is a framework to describe the statistical distribution of data elements and
their links. During the biohackathon, Jerven Bolleman and Jose Labra started a new project
called void2shapes to generate ShEx and SHACL declarations from void descriptions in UniProt.
We succeeded in generating a minimal ShACL representation from the VoID files of UniProt
and SwissLipids.

Improve the ShEx tooling
We are currently transitioning some of the ShEx implementations that were initially implemented
in Scala to Rust. We have been looking to some tools in the Rust ecosystem like the Severless
SPARQL endpoint that has been developed by Nishad in Javascript for Deno based on the
Oxigraph database that is implemented in Rust that has a binding that works in WebAssembly.
We consider that this solution could enable further performance and dynamic scalability and
enable edge-computing use cases. One possible use case would be to adapt the next Rust
implementation of ShEx to work on WebAssembly and could be integrated with OxiGraph and
do ShEx validation on-the-fly.

Improvements to sheXer
• Automatic splitting of large RDF data files
• Parallel/distributed extraction of ShEx portions
• Automatic consolidation of ShEx portions
• Generation of rdfconfig yaml files

SPARQL to ShEx converter
• We noticed that in several use cases, we start with an example SPARQL query which we

want later to convert to ShEx. An interesting project would be to generate ShEx from
those SPARQL queries.

Explore the idea about ShEx transitions
• Being able to declare transitions between ShEx schemas so they can be checked as

pre- and post- conditions, example before/after SPARQL updates. This idea has been
provided by Thomas Liener in this document.

ShEx template injection
• Being able to have parameterizable ShEx schemas whose specific values could be injected

in a way that ShEx schemas could be dynamically generated

RDF representation of ShapeMaps
• We resumed the work on this issue and we expect to update the ShapeMap specification

including a description of a representation of shape maps that shows how to represent
them in RDF.

Generating ShEx files from void descriptions
• RDF representation of ShEx uses RDF lists which are a bit challenging to generate

from SPARQL Construct queries. Jerven Bolleman solved it generating IRIs for the
intermediate nodes but it may be interesting to generate the nodes in the list as blank
nodes. Eric Prod’hommeaux raised this issue in Apache Jena and it would be interesting
work to see if we could solve the issue or find some way to solve the problem.

Jose E. Labra et al., BioHackJP 2023 Data Integration ShEx (2023). BioHackrXiv.org 8

https://ftp.ncbi.nlm.nih.gov/pubchem/RDF/
http://togogenome.org/rdf/
https://github.com/JervenBolleman/void-generator
https://github.com/JervenBolleman/void-generator
https://www.w3.org/TR/void/
https://github.com/shex-consolidator/void2shapes
https://www.w3.org/TR/void/
https://sparql.uniprot.org/sparql
https://beta.sparql.swisslipids.org/sparql
https://github.com/nishad/serverless-sparql-endpoint
https://github.com/nishad/serverless-sparql-endpoint
https://oxigraph.org/
https://webassembly.org/
https://docs.google.com/document/d/1LyBlRuwvl6BQZkEQG6_2gc2kJrs05qaYVie-w4-Lnvc/edit?usp=sharing
https://github.com/shexSpec/shex/issues/67
http://shex.io/shape-map/
https://github.com/apache/jena/issues/1933
https://biohackrxiv.org/

• This work will be folllowed on in the void2shapes project.

Conversion from ShEx to LinkML
Another topic of discussion was the possibility of converting ShEx shapes to LinkML. This
would allow for the conversion of existing ShEx shapes to a flexible format such as the LinkML
YAML and enable the subsequent use of the tooling provided by LinkML to generate other
outputs that are supported by the LinkML framework.
For example, if we have a ShEx shape GeneShape,
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX SO: <http://purl.obolibrary.org/obo/SO_>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

<GeneShape> {
rdf:type [SO:0000704] ;
dcterms:title xsd:string ;
dcterms:alternative xsd:string * ;

}

Then we should be able to convert and represent this shape in LinkML YAML that looks like
so,
id: http://example.org/Example
name: Example

prefixes:
ex: http://example.org/
linkml: https://w3id.org/linkml/
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
SO: http://purl.obolibrary.org/obo/SO_
dcterms: http://purl.org/dc/terms/
xsd: http://www.w3.org/2001/XMLSchema#

imports:
- linkml:types

default_prefix: ex
default_range: string

classes:
Gene:

slots:
- type
- title
- alternative

slot_usage:
type:

slot_uri: rdf:type
range: TypeEnum

title:
slot_uri: dcterms:title

alternative:
slot_uri: dcterms:alternative

Jose E. Labra et al., BioHackJP 2023 Data Integration ShEx (2023). BioHackrXiv.org 9

https://github.com/shex-consolidator/void2shapes/
https://biohackrxiv.org/

slots:
type:
title:
alternative:

enums:
TypeEnum:

permissible_values:
gene:

meaning: SO:0000704

The above LinkML YAML is a working example and can be parsed using LinkML framework.
Preliminary analysis seem to indicate that the conversion is possible but with some limitations
which can be addressed if the use-cases are well defined and sufficent examples are available
for rapid prototyping. This is something that Jose Labra and Deepak would like to work on in
the future.

Conversion from ShEx to RDF-config YAML files
Another possibility is to explore the generation of RDF-config YAML files that follow this
specification.

Use case about integrating RDF data and clinical records
The accelerating pace of discoveries in biotechnology offers great hope in medicine. Yet, access
to clinical information necessary for research and innovation has been challenging. Clinical data
often resides in proprietary stores and proprietary formats that are not amenable to integration
with other data sources. The increasing adoption of the Fast Healthcare Interoperability
Resources (FHIR) standard by Electronic Health Records (EHR) vendors and FHIR’s support
for RDF is offering hope that clinical data may soon be made more accessible to a broader
community. Moreover, current investigations on how to support known semantic web standards
such as SPARQL, ShEx and ShExMap within FHIR all stand to make FHIR and thereby clinical
data more accessible to the broader research community.

Use case about drug repurposing
Computational drug repurposing is a well known strategy to speed up drug development with
potentially lower overall development costs and shorter development timelines with de-risked
‘old’ compounds. However, current knowledge graphs used in AI-based drug repurposing lack
metabolite-related information, which is data especially interesting to include for metabolic
diseases drug discovery. In this BioHackathon, we investigated ways to retrieve metabolite-
related information crossing several knowledge bases such as UniProt or PubChem to feed drug
repurposing knowledge graphs. Even though there is a lot of curated metabolite data stored,
this data is not neither easily nor systematically retrievable from databases. In the future, we
aim at producing efficient ways for metabolite-related information retrieval for knowledge graph
construction based on subsetting strategies such as using RDFconfig to generate SPARQL
queries or using ShEx-based approaches.

Acknowledgements
We would like to thank the fellow participants at BioHackathon 2023 for their collaboration
and constructive advice, which greatly influenced our project. We are grateful to the organizers
for providing this platform and the developers of open source language models. Special
thanks to our mentors, advisors, and colleagues for their guidance and support. Without their

Jose E. Labra et al., BioHackJP 2023 Data Integration ShEx (2023). BioHackrXiv.org 10

https://github.com/dbcls/rdf-config/blob/master/doc/spec.md
https://github.com/dbcls/rdf-config/blob/master/doc/spec.md
https://www.hl7.org/
https://shex.io/extensions/Map/
https://nuriaqueralt.github.io/bh23-onlinebook/metabolite_subsetting.html
https://biohackrxiv.org/

contributions, our project in linked data standardization with LLMs in bioinformatics would
not have been possible.

References
Hosseini, J. E. A. W., Seyed AND Labra-Gayo. (2023). Wikidata subsetting: Ap-
proaches, tools, and evaluation. https://www.semantic-web-journal.net/content/
wikidata-subsetting-approaches-tools-and-evaluation-0
Prud’hommeaux, E., Labra Gayo, J. E., & Solbrig, H. (2014). Shape expressions: An RDF
validation and transformation language. Proceedings of the 10th International Conference on
Semantic Systems, SEMANTICS 2014, 32–40.

Jose E. Labra et al., BioHackJP 2023 Data Integration ShEx (2023). BioHackrXiv.org 11

https://www.semantic-web-journal.net/content/wikidata-subsetting-approaches-tools-and-evaluation-0
https://www.semantic-web-journal.net/content/wikidata-subsetting-approaches-tools-and-evaluation-0
https://biohackrxiv.org/

	Background
	Outcomes
	Creation of ShEx based subsets
	UniProt subset based on proteins
	UniProt subset based on Subcellular locations
	The results obtained from the experiment
	Analysed some use cases to extract subsets from PubChem, GlyCosmos and Reactome
	Reactome
	TogoGenome

	Subsetting book
	Work on sheXer
	Use case about Multi-omics data integration
	Analysis about RDF data description mechanisms

	Future work
	Add FROM <…> to ShEx
	Machine-readable way that RDF data providers describe their RDF dumps
	Improve the ShEx tooling
	Improvements to sheXer
	SPARQL to ShEx converter
	Explore the idea about ShEx transitions
	ShEx template injection
	RDF representation of ShapeMaps
	Generating ShEx files from void descriptions
	Conversion from ShEx to LinkML
	Conversion from ShEx to RDF-config YAML files
	Use case about integrating RDF data and clinical records
	Use case about drug repurposing
	Acknowledgements
	References

