
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/375107907

Using Pregel to Create Knowledge Graphs Subsets Described by Non-recursive

Shape Expressions

Chapter · October 2023

DOI: 10.1007/978-3-031-47745-4_10

CITATION

1
READS

24

2 authors:

Ángel Iglesias Préstamo

University of Oviedo

1 PUBLICATION 1 CITATION

SEE PROFILE

Jose Emilio Labra Gayo

University of Oviedo

214 PUBLICATIONS 2,442 CITATIONS

SEE PROFILE

All content following this page was uploaded by Ángel Iglesias Préstamo on 15 March 2024.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/375107907_Using_Pregel_to_Create_Knowledge_Graphs_Subsets_Described_by_Non-recursive_Shape_Expressions?enrichId=rgreq-d2595a15ae047ef2107f6be38f07520d-XXX&enrichSource=Y292ZXJQYWdlOzM3NTEwNzkwNztBUzoxMTQzMTI4MTIyOTQ2OTA0NEAxNzEwNDk1OTQzNzI1&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/375107907_Using_Pregel_to_Create_Knowledge_Graphs_Subsets_Described_by_Non-recursive_Shape_Expressions?enrichId=rgreq-d2595a15ae047ef2107f6be38f07520d-XXX&enrichSource=Y292ZXJQYWdlOzM3NTEwNzkwNztBUzoxMTQzMTI4MTIyOTQ2OTA0NEAxNzEwNDk1OTQzNzI1&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-d2595a15ae047ef2107f6be38f07520d-XXX&enrichSource=Y292ZXJQYWdlOzM3NTEwNzkwNztBUzoxMTQzMTI4MTIyOTQ2OTA0NEAxNzEwNDk1OTQzNzI1&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Angel-Iglesias-Prestamo?enrichId=rgreq-d2595a15ae047ef2107f6be38f07520d-XXX&enrichSource=Y292ZXJQYWdlOzM3NTEwNzkwNztBUzoxMTQzMTI4MTIyOTQ2OTA0NEAxNzEwNDk1OTQzNzI1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Angel-Iglesias-Prestamo?enrichId=rgreq-d2595a15ae047ef2107f6be38f07520d-XXX&enrichSource=Y292ZXJQYWdlOzM3NTEwNzkwNztBUzoxMTQzMTI4MTIyOTQ2OTA0NEAxNzEwNDk1OTQzNzI1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Oviedo?enrichId=rgreq-d2595a15ae047ef2107f6be38f07520d-XXX&enrichSource=Y292ZXJQYWdlOzM3NTEwNzkwNztBUzoxMTQzMTI4MTIyOTQ2OTA0NEAxNzEwNDk1OTQzNzI1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Angel-Iglesias-Prestamo?enrichId=rgreq-d2595a15ae047ef2107f6be38f07520d-XXX&enrichSource=Y292ZXJQYWdlOzM3NTEwNzkwNztBUzoxMTQzMTI4MTIyOTQ2OTA0NEAxNzEwNDk1OTQzNzI1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose-Labra-Gayo?enrichId=rgreq-d2595a15ae047ef2107f6be38f07520d-XXX&enrichSource=Y292ZXJQYWdlOzM3NTEwNzkwNztBUzoxMTQzMTI4MTIyOTQ2OTA0NEAxNzEwNDk1OTQzNzI1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose-Labra-Gayo?enrichId=rgreq-d2595a15ae047ef2107f6be38f07520d-XXX&enrichSource=Y292ZXJQYWdlOzM3NTEwNzkwNztBUzoxMTQzMTI4MTIyOTQ2OTA0NEAxNzEwNDk1OTQzNzI1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Oviedo?enrichId=rgreq-d2595a15ae047ef2107f6be38f07520d-XXX&enrichSource=Y292ZXJQYWdlOzM3NTEwNzkwNztBUzoxMTQzMTI4MTIyOTQ2OTA0NEAxNzEwNDk1OTQzNzI1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose-Labra-Gayo?enrichId=rgreq-d2595a15ae047ef2107f6be38f07520d-XXX&enrichSource=Y292ZXJQYWdlOzM3NTEwNzkwNztBUzoxMTQzMTI4MTIyOTQ2OTA0NEAxNzEwNDk1OTQzNzI1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Angel-Iglesias-Prestamo?enrichId=rgreq-d2595a15ae047ef2107f6be38f07520d-XXX&enrichSource=Y292ZXJQYWdlOzM3NTEwNzkwNztBUzoxMTQzMTI4MTIyOTQ2OTA0NEAxNzEwNDk1OTQzNzI1&el=1_x_10&_esc=publicationCoverPdf

Using Pregel to create Knowledge Graphs
subsets described by non-recursive Shape

Expressions

Ángel Iglesias Préstamo1[0009−0004−0686−4341] and Jose Emilio Labra
Gayo1[0000−0001−8907−5348]

WESO Lab - University of Oviedo, Spain

Abstract. Knowledge Graphs have been successfully adopted in recent
years, existing general-purpose ones, like Wikidata, as well as domain-
specific ones, like UniProt. Their increasing size poses new challenges
to their practical usage. As an example, Wikidata has been growing the
size of its contents and their data since its inception making it difficult to
download and process its data. Although the structure of Wikidata items
is flexible, it tends to be heterogeneous: the shape of an entity represent-
ing a human is distinct from that of a mountain. Recently, Wikidata
adopted Entity Schemas to facilitate the definition of different schemas
using Shape Expressions, a language that can be used to describe and
validate RDF data. In this paper, we present an approach to obtain
subsets of knowledge graphs based on Shape Expressions that use an
implementation of the Pregel algorithm implemented in Rust. We have
applied our approach to obtain subsets of Wikidata and UniProt and
present some of these experiments’ results.

Keywords: Knowledge Graphs · Graph algorithms · RDF · Linked Data
· RDF Validation · Shape Expressions · Subsets · Pregel

1 Introduction

Knowledge graphs have emerged as powerful tools for representing and organiz-
ing vast amounts of information in a structured manner. As their applications
continue to expand across various domains, the need for an efficient and scalable
processing of these graphs becomes increasingly critical.

Creating subsets of knowledge graphs is a common approach for tackling the
challenges posed by their size and complexity. Subsets are essential not only to
reduce computational overhead but also to focus on specific aspects of the data.

In this paper, we explore the synergy between two essential concepts in
the field of graph processing: Shape Expressions (ShEx) [13] and the Pregel
model [11]. Shape Expressions allow to describe and validate knowledge graphs
based on the Resource Description Framework (RDF). These expressions have
gained significant adoption in prominent projects like Wikidata. On the other
hand, Pregel is a distributed graph processing model designed for efficiently
handling large-scale graphs across multiple machines.

2 Ángel Iglesias Préstamo and Jose Emilio Labra Gayo

Motivated by the need for handling massive graphs in a scalable manner,
we propose the concept of creating subsets of knowledge graphs using Shape
Expressions. By selecting relevant portions of the graph, we can focus on specific
areas of interest, leading to enhanced efficiency and reduced processing times.

Furthermore, we delve into the capabilities of the Pregel algorithm and its
potential for distributed graph processing. We emphasize that the scalability of
graph computation can be achieved not only by increasing the number of ma-
chines but also by optimizing the use of multi-threading solutions to leverage
a single machine’s capabilities. Hence, our solution aims to distribute the prob-
lem across multiple threads of a single-node machine. This is, a multi-threaded
Pregel. The idea is not only to provide a solution that can run on any hardware
efficiently but also to explore the capabilities of Rust for enabling some perfor-
mance gains regarding single-node computation. The main contributions of this
paper are the following:

1. We present an approach for subset generation of Knowledge Graphs based
on Shape Expressions using the Pregel Framework.

2. We have implemented it in Rust.
3. We have applied it to generate subsets of Wikidata and UniProt and pre-

sented some optimizations and results.

Section 2 establishes the alternatives and work related to what is presented
in the document. Section 3 presents the key concepts required for describing the
foundations of the problem to be solved. Section 4 explains the most important
algorithms for creating Knowledge Graph subsets. Section 5, the novel approach
introduced by this paper is described. Section 6 depicts the experiment for an-
alyzing how the Pregel-based Schema validating algorithm behaves. Section 7
contains the conclusions and future work.

2 Related work

2.1 Knowledge Graph descriptions

Several Knowledge Graph descriptions have been proposed, with many outlined
in [4,6]. Notably, this paper focuses on Property, RDF, and Wikibase graphs.

Shape Expressions, which are used to create the subsets, were first introduced
in 2014. While SHACL (Shapes Constraint Language) is the W3C recommenda-
tion1, the Wikidata community has been using Shape Expressions [15] since 2019
in the entity schemas namespace. The preference for Shape Expressions arises
from their superior adaptability in describing data models when compared to
SHACL, which is more focused on constraint violation. A comparison between
both can be found in the book [10].

2.2 Knowledge Graph subsets

Although it is possible to create subsets of the RDF Knowledge Graph through
SPARQL construct queries, there are limitations to this approach. Notably, the

1 https://www.w3.org/TR/2017/REC-shacl-20170720/

https://www.w3.org/TR/2017/REC-shacl-20170720/

Using Pregel to create Knowledge Graphs Subsets 3

lack of support for recursion. While proposals to extend SPARQL with recur-
sion have been made [14], such extensions are not widely supported by existing
processors. In light of these limitations, a new method using Shape Expressions
for creating Knowledge Graph subsets is described in [4]. PSchema follows a sim-
ilar approach to that presented in [17]. However, SP-Tree uses a SPARQL to
query the Knowledge Graph, while PSchema uses Shape Expressions and Rust.
As such, the PSchema algorithm is more flexible, leaving room for optimizations.

The creation of Knowledge graph subsets has gained attention, starting from
the 12th International SWAT4HCLS Conference2. It has since been selected as a
topic of interest in the Elixir Europe Biohackathon 20203 and the SWAT4HCLS
2021 Hackathon, which resulted in several publications collecting different ap-
proaches [8,7]. This paper is inspired by one of those approaches based on Apache
Spark but using a new implementation of the Pregel algorithm in Rust.

It has been discussed that the Wikidata Knowledge Graph is not feasible
to be processed in a single domestic computer using the existing techniques.
To address this issue, a novel method to split the Wikidata graph into smaller
subsets using Shape Expressions was introduced in [4].

A comparison between several approaches and tools for creating Wikidata
Knowledge graph subsets has been discussed [2], where they evaluated the per-
formance of different approaches and tools. Their methodology for measuring
performance and conducting experiments served as the primary inspiration for
designing the experiments in section 6.

3 Background

3.1 Knowledge graphs

Definition 1 (Knowledge Graph [4,6]). A Knowledge Graph is a graph-
structured data model that captures knowledge in a specific domain, having nodes
that represent entities and edges modeling relationships between those.

Definition 2 is a general and open description of a Knowledge Graph. There
are several data models for representing Knowledge Graphs, including Directed
edge-labeled and Property Graphs [6], to name a few. In this paper, we will focus
on RDF-based Knowledge Graphs, a standardized data model based on Directed
edge-labeled graphs [6].

RDF-based Knowledge Graphs The Resource Description Framework (RDF)
is a standard model for data interchange on the Web. It is a W3C Recommenda-
tion for representing information based on a directed edge-labeled graph, where
labels are the resource identifiers. The idea behind the RDF model is to make
statements about things in the form of subject-predicate-object triples. The sub-
ject denotes the resource itself, while the predicate expresses traits or aspects

2 https://www.wikidata.org/wiki/Wikidata:WikiProject Schemas/Subsetting
3 https://github.com/elixir-europe/BioHackathon-projects-2020/tree/master/
projects/35

https://www.wikidata.org/wiki/Wikidata:WikiProject_Schemas/Subsetting
https://github.com/elixir-europe/BioHackathon-projects-2020/tree/master/projects/35
https://github.com/elixir-europe/BioHackathon-projects-2020/tree/master/projects/35

4 Ángel Iglesias Préstamo and Jose Emilio Labra Gayo

of it and expresses a relationship between the subject and the object, another
resource. This linking system forms a graph data structure, which is the core
of the RDF model. If the dataset represents Knowledge of a specific domain,
the Graph will be an RDF-based Knowledge Graph. There are several serial-
ization formats for RDF-based Knowledge Graphs, including Turtle, N-Triples,
and JSON-LD. Its formal definition is as follows:

Definition 2 (RDF-based Knowledge Graph [4]). Given a set of IRIs I,
a set of blank nodes B, and a set of literals L. An RDF-based Knowledge Graph
is defined as a triple-based graph G = ⟨S,P,O, ρ⟩ where S ⊆ I ∪ B, P ⊆ I,
O ⊆ I ∪ B ∪ L, and ρ ⊆ S × P ×O.

Example 1 (RDF-based Knowledge Graph of Alan Turing4). Alan Turing (23
June 1912 – 7 June 1954) was employed by the government of the United King-
dom in the course of WWII. During that time he developed the computer for
deciphering Enigma-machine-encrypted secret messages, namely, the Bombe ma-
chine. Additional information about relevant places where he lived is also anno-
tated, including his birthplace, and the place where he died.

I = { alanTuring, wilmslow, GCHQ, unitedKingdom, warringtonLodge, bombe
town, computer, dateOfBirth, placeOfBirth, employer, placeOfDeath,
country, manufacturer, instanceOf }

B = { ∅ }
L = { 23 June 1912 }
ρ = { (alanTuring, instanceOf , Human),

(alanTuring, dateOfBirth, 23 June 1912),
(alanTuring, placeOfBirth, warringtonLodge),
(alanTuring, placeOfDeath, wilmslow),
(alanTuring, employer, GCHQ),
(bombe, discoverer, alanTuring),
(bombe, manufacturer, GCHQ),
(bombe, instanceOf , computer),
(wilmslow, country, unitedKingdom)
(wilmslow, instanceOf , town)
(warringtonLodge, country, unitedKingdom) }

URIs in Wikidata follow a linked-data pattern called opaque URIs represent-
ing them as unique sequences of characters that are language-independent. As
an example, Alan Turing’s identifier is serialized as Q7251. Furthermore, within
Wikidata, there is a designated property known as instanceOf that serves to
describe the type of entity it is associated with, which resembles the rdf:type

constraint. This can be employed to perform an early evaluation of the nodes.

4 https://rdfshape.weso.es/link/16902825958

http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/Q2011497
http://www.wikidata.org/entity/Q220798
http://www.wikidata.org/entity/Q145
http://www.wikidata.org/entity/Q20895942
http://www.wikidata.org/entity/Q480476
http://www.wikidata.org/entity/Q3957
http://www.wikidata.org/entity/Q11742076
http://www.wikidata.org/entity/P569
http://www.wikidata.org/entity/P19
http://www.wikidata.org/entity/P108
http://www.wikidata.org/entity/P20
http://www.wikidata.org/entity/P27
http://www.wikidata.org/entity/P176
http://www.wikidata.org/entity/P31
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/P31
http://www.wikidata.org/entity/Q5
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/P569
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/P19
http://www.wikidata.org/entity/Q20895942
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/P20
http://www.wikidata.org/entity/Q2011497
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/P108
http://www.wikidata.org/entity/Q220798
http://www.wikidata.org/entity/Q480476
http://www.wikidata.org/entity/P61
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/Q480476
http://www.wikidata.org/entity/P176
http://www.wikidata.org/entity/Q220798
http://www.wikidata.org/entity/Q480476
http://www.wikidata.org/entity/P31
http://www.wikidata.org/entity/Q11742076
http://www.wikidata.org/entity/Q2011497
http://www.wikidata.org/entity/P27
http://www.wikidata.org/entity/Q145
http://www.wikidata.org/entity/Q2011497
http://www.wikidata.org/entity/P31
http://www.wikidata.org/entity/Q3957
http://www.wikidata.org/entity/Q20895942
http://www.wikidata.org/entity/P27
http://www.wikidata.org/entity/Q145
https://rdfshape.weso.es/link/16902825958

Using Pregel to create Knowledge Graphs Subsets 5

3.2 ShEx

Shape Expressions (ShEx) were designed as a high-level, domain-specific lan-
guage for describing RDF graph structures. The syntax of ShEx is inspired by
Turtle and SPARQL, while the semantics are motivated by RelaxNG and XML
Schema. In this manner, Shape Expressions specify the requirements that RDF
data graphs must fulfill to be considered conformant, they allow systems to es-
tablish contracts for sharing information; through a common schema, systems
agree that a certain resource should be part of the graph. This pattern behaves
similarly to interfaces in the object-oriented paradigm. Shapes can be specified
using a JSON-LD syntax or a human-friendly concise one called ShExC.

Example 2. The schema below describes the Person Shape Expression, which is
used to validate the RDF-based Knowledge Graph of Alan Turing (see example
1). Recall, Person is just the label of the resource and does not relate to the
Human entity. The ShExC-serialized schema can be found in RDFShape.

L = { Person, Place, Country, Organization, Date }
δ(Person) = { placeOfBirth−−−−−−−−−→ @Place,

dateOfBirth−−−−−−−−→ @Date,
employer−−−−−−→ @Organization }

δ(Place) = { country−−−−−→ @Country }
δ(Country) = { }

δ(Organization) = { }
δ(Date) ∈ xsd:date

3.3 Pregel

Pregel (Parallel, Graph, and Google) is a data flow paradigm created by Google
to handle large-scale graphs. Even if the original instance remains proprietary
at Google, it was adopted by many graph-processing systems, including Apache
Spark. For a better understanding of Pregel, the idea is to think like a vertex [12];
this is, the state of a given node will only depend on that of its neighbors, the
nodes linked to it by an outgoing edge (see definition 4). Hence, by thinking like
a vertex, the problem is divided into smaller ones. Instead of dealing with huge
graphs, smaller ones are processed: a vertex and its neighbors.

The series of steps that Pregel follows to process a graph are depicted in
Figure 1. The execution starts by sending the initial messages to the vertices
at iteration 0. Then, the first – actual – superstep begins. In our current im-
plementation, this loop will last until the current iteration is greater than the
threshold set at the creation of the Pregel instance. At each iteration, the vertices
will send messages to their neighbors, provided the given direction, and subse-
quently, they may receive messages sent from other nodes. Moving forward, an
aggregation function is applied, and the vertices are updated accordingly. Finally,
the iteration counter is incremented and the next iteration starts.

https://rdfshape.weso.es/link/16903596470
http://www.wikidata.org/entity/P19
http://www.wikidata.org/entity/P569
http://www.wikidata.org/entity/P108
http://www.wikidata.org/entity/P27

6 Ángel Iglesias Préstamo and Jose Emilio Labra Gayo

Initial Messages

Send Messages

Aggregate Messages

Vertex Program

[if superstep ≤ max superstep] [else]

Fig. 1: Pregel model as implemented in pregel-rs

4 Subsetting approaches

4.1 Knowledge Graph subsets, a formal definition

Definition 3 (RDF-based Knowledge Graph subset [4]). Given a Knowl-
edge Graph G = ⟨S,P,O, ρ⟩, as defined in 2, a RDF sub-graph is defined as
G′ = ⟨S ′,P ′,O′, ρ′⟩ such that: S ′ ⊆ S, P ′ ⊆ P, O′ ⊆ O and ρ′ ⊆ ρ.

Example 3 (Example of an RDF-based Knowledge Graph subset). Given the
RDF-based Knowledge Graph G = ⟨S,P,O, ρ⟩ from example 1, the subset G′
that only contains information about Alan’s birthplace is as follows:

I′ = { alanTuring, warringtonLodge, dateOfBirth, placeOfBirth }
B′ = { ∅ }
L′ = { 23 June 1912 }
ρ′ = { (alanTuring, dateOfBirth, 23 June 1912),

(alanTuring, placeOfBirth, warringtonLodge) }

4.2 ShEx-based matching generated subsets

ShEx-based matching comprises using a ShEx schema as input, including any
nodes whose neighborhood matches any of the shapes from in the produced
subset [4]. This approach is used by the PSchema algorithm.

Definition 4 (Neighborhood of a node in a Knowledge graph). The
neighbors of an item s ∈ S in a RDF-based Knowledge graph G = ⟨S,P,O, ρ⟩
are defined as neighbors(s) = {(s, p, o) : ∃v ∈ S such that ρ(v) = (p, o)}.

Example 4 (Neighborhood of Alan Turing (Q7251)). Given the RDF-based Knowl-
edge graph G = ⟨S,P,O, ρ⟩ from example 1, the neighborhood of Alan Turing
(Q7251) ∈ S is defined as follows:

Example 5 (Example of a ShEx-based matching subgraph). Given the RDF-based
Knowledge Graph G = ⟨S,P,O, ρ⟩ from example 1 and the ShEx schema defined
in example 2, the ShEx-based matching subgraph of G from is the RDF-based
Knowledge graph G′, which defined as follows:

https://github.com/weso/pregel-rs
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/Q20895942
http://www.wikidata.org/entity/P569
http://www.wikidata.org/entity/P19
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/P569
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/P19
http://www.wikidata.org/entity/Q20895942
https://www.wikidata.org/wiki/Q7251
https://www.wikidata.org/wiki/Q7251
https://www.wikidata.org/wiki/Q7251

Using Pregel to create Knowledge Graphs Subsets 7

neighbors(alanTuring) = { (alanTuring, instanceOf , Human),
(alanTuring, dateOfBirth, 23 June 1912),
(alanTuring, placeOfBirth, warringtonLodge),
(alanTuring, placeOfDeath, wilmslow),
(alanTuring, employer, GCHQ) }

I′ = { alanTuring, wilmslow, GCHQ, unitedKingdom, warringtonLodge,
dateOfBirth, placeOfBirth, employer, country }

B′ = { ∅ }
L′ = { 23 June 1912 }
ρ = { (alanTuring, dateOfBirth, 23 June 1912),

(alanTuring, placeOfBirth, warringtonLodge),
(alanTuring, employer, GCHQ),
(wilmslow, country, unitedKingdom)
(warringtonLodge, country, unitedKingdom) }

5 Pregel-based Schema validating algorithm

In this section, both the support data structure and the subsetting algorithm are
described, including the different steps followed in the Pregel implementation.

5.1 Shape Expression tree

The Shape Expression tree is a hierarchical data structure representing Shapes
in a tree format. Each node in the tree corresponds to a Shape Expression, with
the root node being the one subject of study. Nodes can reference other Shape
Expressions, which become its children in the tree.

Definition 5 (Shape Expression tree). Given a Shape Expression , the Shape
Expression tree T is defined as follows:

– If does not reference any other Shape, then T is a leaf node.
– If references other Shapes, then T is an internal node, and its children are

the Shapes referenced by . Which will be the root nodes of their respective
Shape Expression trees.

Example 6. Given the Shape Expression defined in example 2, the Shape Ex-
pression tree T obtained from was created using the RDFShape and is depicted
in Figure 2. Person is the root node of T , a non-terminal Shape that references
Organization, Date, and Place. Thus, the children of the root are the Shapes
referenced by Person, which are the root nodes of their respective Shape Ex-
pression trees. In the case of the first child, Organization is a terminal Shape,
and thus, it is a leaf node. The same applies to Date. However, Place is a non-
terminal Shape, and thus, it is an internal node. Its children are the Shapes

referenced by it. This representation is recursive, and thus, the Shapes refer-
enced by Place are the root nodes of their respective ShEx trees.

The currently supported ShEx language does not support recursion; however,
it is planned to implement a solution based on the idea of unfolding the recursive
schema.

http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/P31
http://www.wikidata.org/entity/Q5
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/P569
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/P19
http://www.wikidata.org/entity/Q20895942
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/P20
http://www.wikidata.org/entity/Q2011497
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/P108
http://www.wikidata.org/entity/Q220798
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/Q2011497
http://www.wikidata.org/entity/Q220798
http://www.wikidata.org/entity/Q145
http://www.wikidata.org/entity/Q20895942
http://www.wikidata.org/entity/P569
http://www.wikidata.org/entity/P19
http://www.wikidata.org/entity/P108
http://www.wikidata.org/entity/P27
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/P569
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/P19
http://www.wikidata.org/entity/Q20895942
http://www.wikidata.org/entity/Q7251
http://www.wikidata.org/entity/P108
http://www.wikidata.org/entity/Q220798
http://www.wikidata.org/entity/Q2011497
http://www.wikidata.org/entity/P27
http://www.wikidata.org/entity/Q145
http://www.wikidata.org/entity/Q20895942
http://www.wikidata.org/entity/P27
http://www.wikidata.org/entity/Q145
https://rdfshape.weso.es/link/16903596470

8 Ángel Iglesias Préstamo and Jose Emilio Labra Gayo

:Person

:Organization :Date :Place

:Country

:country

:birthPlace:birthDate:employer

Generated by rdfshape

Fig. 2: Example of a Shape Expression tree for the Person Shape Expression

5.2 Subsetting algorithm using Pregel and ShEx

Algorithm 1: The PSchema algorithm as implemented in Rust

Input parameters:
g : Graph[V, E]
l : L

Output:
sub: Graph[V, E]

maxIters = see Lemma 1
initialMsgs = None

return Pregel(g,maxIters,initialMsgs,sendMsg,aggMsgs,vProg)

def sendMsg(l : L, g : Graph[V, E]) = msgs where foreach l ∈ L

msgs.insert





validate(l , g) if l = TripleConstraint see Algorithm 2

validate(l , g) if l = ShapeReference see Algorithm 3

validate(l , g) if l = ShapeAnd see Algorithm 4

validate(l , g) if l = ShapeOr see Algorithm 5

validate(l , g) if l = Cardinality see Algorithm 6

None otherwise


def aggMsgs(msgs:M) = msgs where

msgs.insert

({
msg if msg ̸= None

∅ otherwise

)
def vProg(l : L, g : Graph[V, E], msgs:M) = labels.concatenate(msgs)

PSchema is a Pregel-based algorithm that creates subsets of RDF-based Knowl-
edge Graphs using Shape Expressions. The algorithm’s core idea is to validate
the nodes of the Shape Expression tree T in a bottom-up manner, proceeding
from the leaves to the root. The validation is performed in a reverse level-order
traversal of the tree. The algorithm comprises two main phases: initialization and

Using Pregel to create Knowledge Graphs Subsets 9

validation. During the initialization phase, the initial messages are generated and
sent to the vertices, while also setting up the superstep counter and threshold.
This phase establishes the baseline for subsequent steps. In the validation phase,
referred to as the local computation, the Shapes of the tree T are validated. The
vertices are updated based on the messages they receive from their neighbors.
The aforementioned Pregel fork is publicly accessible on Github5. For a formal
description of the procedure, refer to Algorithm 1.

Algorithm 2: Validate method for the TripleConstraint Shape

Input parameters:
l : L
(, p, o): (, p ∈ P, o ∈ O)

Output:
msg : M

match l .object
case Value(v)

if p == l .predicate ∧ o == v then
return l

case Any
if p == l .predicate then

return l

A formal description of the validating algorithms for each of the currently
implemented Shapes is provided. Note that the input parameters are simplified,
as in the actual implementation of the algorithm it can access the whole Graph.
Having said that, the first method that is described is the validating algorithm for
the TripleConstraint Shape, as seen in algorithm 2. This Shape corresponds
to the most basic representation of a Node Constraint. In that manner, it is
verified if a node satisfies the predicate and object constraints. In other words,
if it exists an outgoing edge from a certain node to another determined by the
Shape that is being validated currently. Note that the Object may be an actual
value or any.

Algorithm 3: Validate method for the ShapeReference Shape

Input parameters:
l : L
(, p, o): (, p ∈ P, o ∈ O)

Output:
msg : M

if p == l .predicate ∧ o == l .reference.object then
return l

5 https://github.com/weso/pregel-rs

https://github.com/weso/pregel-rs

10 Ángel Iglesias Préstamo and Jose Emilio Labra Gayo

The ShapeReference is in charge of evaluating the cases in which the object
of a Triple Constraint is an IRI; that is, a reference to another Shape. Even if
the algorithm behaves similarly to the description before, the implementation
details vary as the value referenced has to be retrieved. Refer to algorithm 3.

Algorithm 4: Validate method for the ShapeAnd Shape

Input parameters:
l : L
(, p, o): (, p ∈ P, o ∈ O)

Output:
msg :M

ans← true

forall l ∈ l .shapes do
ans← ans ∧ validate(l, g)

if ans then
return l

The ShapeAnd constraint checks whether all the Shapes wrapped by it are
valid. Having all the children already evaluated, it is going to be checked if all
of them hold for every node in the graph. This is, the ShapeAnd acts as a logical
and for a grouping of Shapes. Refer to algorithm 4.

Algorithm 5: Validate method for the ShapeOr Shape

Input parameters:
l : L
(, p, o): (, p ∈ P, o ∈ O)

Output:
msg :M

ans← false

forall l ∈ l .shapes do
ans← ans ∨ validate(l, g)

if ans then
return l

The ShapeOr constraint checks whether any Shape wrapped is valid. Having
all the children already evaluated, it is going to be checked if any of them holds
for every node in the graph. This is, the ShapeOr acts as a logical or for a
grouping of Shapes. Refer to algorithm 5.

Using Pregel to create Knowledge Graphs Subsets 11

Algorithm 6: Validate method for the Cardinality Shape

Input parameters:
l : L
(, p, o): (, p ∈ P, o ∈ O)
prevMsg :M

Output:
msg :M

count← prevMsg.count()
match l .min

case Inclusive(min)
if count ≤ min then

min← true

case Exclusive(min)
if count < min then

min← true

match l .max
case Inclusive(max)

if count ≥ max then
max← true

case Exclusive(max)
if count > max then

max← true

if min ∧max then
return l

The Cardinality constraint is in charge of checking whether the Shape
referenced is valid a certain number of times in the neighborhood of every node
in the graph. That is, the number of times the neighboring nodes are valid for a
certain Shape. The concept of inclusivity or exclusivity allows for the range to
be closed or open, respectively. Refer to algorithm 6.

Lemma 1 (Convergence of the PSchema algorithm). Given a Shape Expression
tree T and a Knowledge Graph G, let h denote the height of T ; then the PSchema
algorithm is going to converge in h supersteps. This is, the algorithm is going to
validate all the Shapes of T in h supersteps.

Example 7 (Example of the subset generated by the PSchema algorithm). Given
the RDF-based Knowledge Graph G = ⟨S,P,O, ρ⟩ from example 1 and the ShEx
schema defined in example 2, the ShEx-based matching subgraph of G from is
the RDF-based Knowledge graph G′ from example 5, which is represented in
Turtle syntax as follows, refer to RDFShape for more information:

https://rdfshape.weso.es/link/16905837719

12 Ángel Iglesias Préstamo and Jose Emilio Labra Gayo

1 PREFIX : <http://example.org/>

2 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

3

4 :alan :placeOfBirth :warrington ;

5 :dateOfBirth "1912-06-23"^^xsd:date ;

6 :employer :GCHQ .

7

8 :warrington :country :uk .

9

10 :wilmslow :country :uk .

5.3 Optimizations

Columnar storage [1] is a data warehousing technique used in data processing
systems. Unlike traditional row-based storage, where data is stored in rows,
columnar storage organizes it in columns, grouping values of the same attribute.
Columnar storage enables better data compression, as similar data types are
stored together, reducing the storage footprint. This leads to faster data retrieval
when querying specific columns. It is advantageous for analytical workloads that
involve aggregations or filtering on specific attributes. It also enhances query
performance by leveraging vectorized processing, as modern CPUs can perform
operations on entire sets of data (vectors) more efficiently than on individual
elements, further improving query speeds.

Caching Dictionary encoding [16] is a data compression technique where unique
values in a column are assigned numerical identifiers (dictionary indices) and
stored in a separate data structure. The actual data in the column is replaced
with these compact numerical representations. This technique significantly re-
duces the storage footprint, especially when columns contain repetitive or cate-
gorical data with limited distinct values, as predicates in real-life scenarios.

In data processing scenarios with repeated patterns and aggregations, caching
with columnar storage and dictionary encoding can lead to performance improve-
ments. The reduced data size allows more data to be cached within the same
memory capacity, maximizing cache utilization. Additionally, the focused access
ensures that only the necessary data is retrieved, further enhancing cache ef-
ficiency. The cache can hold a large amount of relevant data, minimizing the
need for costly disk accesses and accelerating query response times, ultimately
resulting in a more efficient and responsive data processing system.

6 Experiments and results

Two different Knowledge Graphs are going to be used to test the algorithm,
namely, Uniprot6 and Wikidata. The former is a database that contains infor-
mation about proteins [3], while the latter is a general-purpose knowledge base

6 https://ftp.uniprot.org/pub/databases/uniprot/current release/rdf/

https://ftp.uniprot.org/pub/databases/uniprot/current_release/rdf/

Using Pregel to create Knowledge Graphs Subsets 13

having a dump created the 21st August 2017. As the serialization format of
Uniprot is RDF/XML, the riot utility from Apache Jena is used to convert from
RDF/XML to N-Triples. Refer to the examples in the GitHub repository7.

As it is seen, the results obtained are similar regarding the size of the subsets.
That is, optimizations have no impact on the validity of the tool; this is, the sub-
sets are correct for the Shape defined. For this, two Shapes were created during
the Japan BioHackathon 2023 [9], namely, protein and subcellular location.
When comparing the optimized version against its counterpart, the time con-
sumption is reduced by 38% and 35%; while the memory consumption is de-
creased by 43% and 38%, respectively. Hence, the optimizations are effective
both time and memory-wise.

Shape Expression Initial triples Resulting triples Time (s) Memory (GB)

protein 7,346,129 226,241 23.35 6.74

subcellular location 7,346,129 1,084,151 57.56 6.04

(a) Execution of the PSchema algorithm with no optimization enabled

Shape Expression Initial triples Resulting triples Time (s) Memory (GB)

protein 7,346,129 226,241 14.58 3.87

subcellular location 7,346,129 1,084,151 37.76 3.75

(b) Execution of the PSchema algorithm with all the optimizations enabled

Fig. 3: Time and memory consumption to create Uniprot’s subsets

In the second experiment, the number of Wikidata entities, the depth, and
the width of the ShEx tree were modified. The results are depicted in Figure 4.
It was observed that the execution time followed a linear trend in all scenarios.
This indicates that as the number of Wikidata entities increased, the execution
time increased at a consistent rate. Additionally, the depth and width of the
ShEx tree influenced the execution time similarly, displaying a linear correlation.

1 · 106 2 · 106
0

50

100

Number of Entities

E
x
ec
u
ti
o
n
ti
m
e
(s
)

1 2 3 4 5 6 7 8 910

Height of the tree

1 2 3 4 5 6 7 8 910

Width of the tree

Fig. 4: Time to create the subsets of Wikidata with pschema-rs

7 Conclusions and future work

A novel approach for creating subsets of RDF-based Knowledge Graphs using
Shape Expressions and the Pregel framework is presented. The PSchema algo-

7 https://github.com/angelip2303/pschema-rs/tree/main/examples/from uniprot

https://github.com/angelip2303/pschema-rs/tree/main/examples/from_uniprot

14 Ángel Iglesias Préstamo and Jose Emilio Labra Gayo

rithm is described, including the different steps followed in the Pregel imple-
mentation. Moreover, the support data structure and the optimizations applied
are also described. Two Shapes were created during the Japan BioHackathon
2023 [9] for testing the tool and its validity regarding the optimizations applied.
The subsets resulting subsets have the same size in both scenarios. When com-
paring the optimized version against its counterpart, the time consumption is
reduced by 38% and 35%; while the memory consumption is decreased by 43%
and 38%, respectively. Hence, the optimizations are effective. The next experi-
ment focused on how the algorithm behaves when its parameters are modified.
It was observed that the execution time followed a linear trend in all cases.

PSchema could be extended to support more complex ShEx features like re-
cursive Shapes, and an early-prune strategy to reduce the cost of the local com-
putation. The algorithm should receive the ShEx schema as an input, rather than
programmatically creating desired Shape instance. It is planned to give support
for WShEx [5], a ShEx-inspired language for describing Wikidata entities, where
qualifiers about statements and references can be used for validating purposes.
This would allow the algorithm to be used in a wider range of scenarios.

To conclude, PSchema, being a Pregel-based Knowledge Graph validating
algorithm, allows the processing of large-scale Knowledge Graphs. This is espe-
cially relevant in the Bioinformatics, where the integration of data from multiple
sources is needed. What’s more, inference algorithms can be applied to the sub-
sets generated, which is not possible in larger Graphs due to their sizes.

8 Acknowledgements

This project has received funding from NumFOCUS, a non-profit organization
promoting open-source scientific projects, and has been supported by the AN-
GLIRU project, funded by the Spanish Agency for Research. The opinions and
arguments employed herein do not reflect the official views of these organizations.

References

1. Abadi, D.J., Madden, S.R., Hachem, N.: Column-stores vs. row-stores:
How different are they really? In: Proceedings of the 2008 ACM SIG-
MOD International Conference on Management of Data. p. 967–980.
SIGMOD ’08, Association for Computing Machinery, New York, NY,
USA (2008). https://doi.org/10.1145/1376616.1376712, https://doi.org/10.1145/
1376616.1376712

2. Beghaeiraveri, S.A.H., Labra-Gayo, J.E., Waagmeeste, A., Ammar, A., Gonza-
lez, C., Slenter, D., Ul-Hasan, S., Willighagen, E.L., McNeill, F., Gray, A.J.G.:
Wikidata subsetting: Approaches, tools, and evaluation (2023), https://www.
semantic-web-journal.net/system/files/swj3491.pdf

3. Consortium, T.U.: UniProt: the Universal Protein Knowledgebase
in 2023. Nucleic Acids Research 51(D1), D523–D531 (11 2022).
https://doi.org/10.1093/nar/gkac1052, https://doi.org/10.1093/nar/gkac1052

4. Gayo, J.E.L.: Creating knowledge graphs subsets using shape expressions (2021).
https://doi.org/10.z8550/ARXIV.2110.11709, https://arxiv.org/abs/2110.11709

5. Gayo, J.E.L.: Wshex: A language to describe and validate wikibase entities (2022),
https://arxiv.org/abs/2208.02697

https://doi.org/10.1145/1376616.1376712
https://doi.org/10.1145/1376616.1376712
https://doi.org/10.1145/1376616.1376712
https://www.semantic-web-journal.net/system/files/swj3491.pdf
https://www.semantic-web-journal.net/system/files/swj3491.pdf
https://doi.org/10.1093/nar/gkac1052
https://doi.org/10.1093/nar/gkac1052
https://doi.org/10.z8550/ARXIV.2110.11709
https://arxiv.org/abs/2110.11709
https://arxiv.org/abs/2208.02697

Using Pregel to create Knowledge Graphs Subsets 15

6. Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., de Melo, G.,
Gutiérrez, C., Kirrane, S., Labra Gayo, J.E., Navigli, R., Neumaier, S.,
Ngonga Ngomo, A.C., Polleres, A., Rashid, S.M., Rula, A., Schmelzeisen,
L., Sequeda, J.F., Staab, S., Zimmermann, A.: Knowledge Graphs. No. 22
in Synthesis Lectures on Data, Semantics, and Knowledge, Springer (2021).
https://doi.org/10.2200/S01125ED1V01Y202109DSK022, https://kgbook.org/

7. Hosseini Beghaeiraveri, S.A., Labra-Gayo, J.E., Waagmeester, A., Ammar,
A., Gonzalez, C., Slenter, D., Sabah Ul-Hasan Willighagen, E., McNeill, F.,
Gray, A.: Wikidata subsetting: approaches, tools, and evaluation. Seman-
tic Web Journal (Jun 2023), https://www.semantic-web-journal.net/content/
wikidata-subsetting-approaches-tools-and-evaluation-0

8. Labra-Gayo, J.E., Hevia, A.G., Álvarez, D.F., Ammar, A., Brickley, D.,
Gray, A.J.G., Prud’hommeaux, E., Slenter, D., Solbrig, H., Beghaeiraveri,
S.A.H., et al.: Knowledge graphs and wikidata subsetting (Apr 2021).
https://doi.org/10.37044/osf.io/wu9et, biohackrxiv.org/wu9et

9. Labra-Gayo, J.E., Waagmeester, A., Yamamoto, Y., Iglesias-Préstamo, A.,
Katayama, T., Liener, T., Unni, D., Bolleman, J., Aoki-Kinoshita, K.F., Yokochi,
M., et al.: RDF Data integration using Shape Expressions (Jul 2023), https:
//biohackrxiv.org/md73k

10. Labra Gayo, J.E., Prud'hommeaux, E., Boneva, I., Kontokostas, D.:
Validating RDF Data. No. 1 in Synthesis Lectures on the Seman-
tic Web: Theory and Technology, Morgan & Claypool Publishers
LLC (sep 2017). https://doi.org/10.2200/s00786ed1v01y201707wbe016,
https://doi.org/10.2200/s00786ed1v01y201707wbe016

11. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Cza-
jkowski, G.: Pregel: a system for large-scale graph processing. In: Proceedings of
the 2010 international conference on Management of data. pp. 135–146. New York,
NY, USA (2010), http://doi.acm.org/10.1145/1807167.1807184

12. McCune, R.R., Weninger, T., Madey, G.: Thinking like a vertex: A survey of vertex-
centric frameworks for large-scale distributed graph processing. ACM Comput.
Surv. 48(2) (oct 2015). https://doi.org/10.1145/2818185, https://doi.org/10.1145/
2818185

13. Prud’hommeaux, E., Labra Gayo, J.E., Solbrig, H.: Shape expressions: an RDF
validation and transformation language. In: Proceedings of the 10th International
Conference on Semantic Systems, SEMANTICS 2014. pp. 32–40. ACM (2014)

14. Reutter, J.L., Soto, A., Vrgoč, D.: Recursion in sparql. In: Arenas, M., Corcho,
O., Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas, K., Groth, P., Dumontier,
M., Heflin, J., Thirunarayan, K., Thirunarayan, K., Staab, S. (eds.) The Semantic
Web - ISWC 2015. pp. 19–35. Springer International Publishing, Cham (2015)

15. Thornton, K., Solbrig, H., Stupp, G.S., Labra Gayo, J.E., Mietchen, D.,
Prud’hommeaux, E., Waagmeester, A.: Using shape expressions (shex) to share
rdf data models and to guide curation with rigorous validation. In: Hitzler, P.,
Fernández, M., Janowicz, K., Zaveri, A., Gray, A.J., Lopez, V., Haller, A., Ham-
mar, K. (eds.) The Semantic Web. pp. 606–620. Springer International Publishing,
Cham (2019)

16. Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes: Compressing and Index-
ing Documents and Images. Morgan Kaufmann Series in Multimedia Information
and Systems, Morgan Kaufmann, San Francisco, CA, 2 edn. (1999)

17. Xu, Q., Wang, X., Li, J., Zhang, Q., Chai, L.: Distributed subgraph matching
on big knowledge graphs using pregel. IEEE Access 7, 116453–116464 (2019).
https://doi.org/10.1109/ACCESS.2019.2936465

View publication stats

https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://kgbook.org/
https://www.semantic-web-journal.net/content/wikidata-subsetting-approaches-tools-and-evaluation-0
https://www.semantic-web-journal.net/content/wikidata-subsetting-approaches-tools-and-evaluation-0
https://doi.org/10.37044/osf.io/wu9et
biohackrxiv.org/wu9et
https://biohackrxiv.org/md73k
https://biohackrxiv.org/md73k
https://doi.org/10.2200/s00786ed1v01y201707wbe016
https://doi.org/10.2200/s00786ed1v01y201707wbe016
http://doi.acm.org/10.1145/1807167.1807184
https://doi.org/10.1145/2818185
https://doi.org/10.1145/2818185
https://doi.org/10.1145/2818185
https://doi.org/10.1109/ACCESS.2019.2936465
https://www.researchgate.net/publication/375107907

	Using Pregel to create Knowledge Graphs subsets described by non-recursive Shape Expressions

